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Parametrically excited surface waves: Two-frequency forcing, normal form symmetries,
and pattern selection
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Motivated by experimental observations of exotic free surface standing wave patterns in the two-frequency
Faraday experiment, we investigate the role of normal form symmetries in the associated pattern-selection
problem. With forcing frequency components in ratiom/n, wherem andn are coprime integers that are not
both odd, there is the possibility that both harmonic waves and subharmonic waves may lose stability simul-
taneously, each with a different wave number. We focus on this situation and compare the case where the
harmonic waves have a longer wavelength than the subharmonic waves with the case where the harmonic
waves have a shorter wavelength. We show that in the former case a normal form transformation can be used
to remove all quadratic terms from the amplitude equations governing the relevant resonant triad interactions.
Thus the role of resonant triads in the pattern-selection problem is greatly diminished in this situation. We
verify our general bifurcation theoretic results within the example of one-dimensional surface wave solutions
of the Zhang-Viñals model@J. Fluid Mech.341, 225 ~1997!# of the two-frequency Faraday problem. In
one-dimension, a 1:2 spatial resonance takes the place of a resonant triad in our investigation. We find that
when the bifurcating modes are in this spatial resonance, it dramatically effects the bifurcation to subharmonic
waves in the case that the forcing frequencies are in ratio 1/2; this is consistent with the results of Zhang and
Viñals. In sharp contrast, we find that when the forcing frequencies are in a ratio 2/3, the bifurcation to
~sub!harmonic waves is insensitive to the presence of another spatially resonant bifurcating mode. This is
consistent with the results of our general analysis.@S1063-651X~99!01505-6#

PACS number~s!: 47.54.1r, 47.20.Ky, 47.35.1i
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I. INTRODUCTION

Exotic free surface standing wave patterns, parametric
excited by two-frequency forcing, have attracted consid
able attention in recent years, both experimentally@2–6# and
theoretically@1,7–10#. In this system, the surface waves a
excited by subjecting the fluid layer to a time-periodic ver
cal acceleration with two~rationally related! frequency com-
ponents. This corresponds to a modification of a classic
drodynamic problem, which dates back to observations
Faraday@11#, in which the surface waves are parametrica
excited by a purely sinusoidal vertical acceleration of
fluid container @12#. Triangular patterns@4#, quasipatterns
@3,5#, and superlattice patterns@5# are among the more exoti
states that have been observed in laboratory experiments
ploying two-frequency forcing. Here, ‘‘quasipatterns’’ a
patterns with twelvefold symmetry and are the hydrod
namic analogs of two-dimensional quasicrystals. These
terns are not spatially periodic, but do have long-range
entational order; their spatial Fourier transform exhib
twelve prominent equally spaced peaks that lie on a cir
Such patterns have been observed for two-frequency for
with excitation frequencies in ratios 4/5, 4/7, 6/7, and 8
@2,3#, as well as in single-frequency Faraday experime
@13–15#. In contrast, ‘‘superlattice’’ patterns are spatially p
riodic with structure on two disparate length scales. Th
have been observed in the two-frequency Faraday sys
with a forcing frequency ratio of 6/7@5#. The observations o
both quasipatterns and superlattice patterns have indic
PRE 591063-651X/99/59~5!/5446~11!/$15.00
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that the patterns aresynchronouswith the forcing frequency.
The Faraday wave problem is an attractive experimental
tem for studying the fundamental mechanisms behind
occurrence of such patterns because of the fast time sc
involved and the number of tunable control paramet
@16,17#.

One motivation behind some of the early experiments
two-frequency parametric excitation of Faraday waves w
to destroy the symmetry associated with subharmonic wa
@2–4#. Specifically, in the classic Faraday experiment w
single-frequency forcing cos(vt), the onset surface waves re
spond subharmonically with frequencyv/2 @18#. ~Harmonic
response is also possible for very shallow layers of visc
fluid @19,20#.! In the situation of subharmonic response the
is a discrete time translation symmetryt→t12p/v that is
broken by the state of the system. This is aZ2 symmetry and
it manifests itself in the governing pattern amplitude equ
tions by suppressing all even terms. Edwards and Fauve@3#
noted that by introducing the second perturbing freque
component to the periodic forcing, they could destroy t
discrete time translation symmetry of the system.

A second feature of using two-frequency forcing is tha
is possible to obtain a neutral stability curve with minima
two distinct wave numbers, where the ratio of these t
critical wave numbers can be adjusted by varying the tw
frequency components of the forcing. Typically, one min
mum corresponds to standing waves that are subharm
with respect to the forcing frequency, while the other min
mum corresponds to synchronous waves@8#. It was proposed
5446 ©1999 The American Physical Society
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by Edwards and Fauve@3# that by tuning the ratio of wave
numbers of the most unstable modes one could control
resonant triad interactions that are important to the patt
formation process@21#. Indeed, all of the exotic pattern
mentioned above were obtained with experimental par
eters near the so-called ‘‘bicritical point’’ where two mod
lose stability simultaneously@3–5#.

The role of resonant triad interactions in the formation
Faraday wave patterns has been investigated extensive
Viñals and co-workers for both the case of single-freque
forcing @22,23# and two-frequency forcing@1#. The most de-
tailed two-frequency calculations focused on the situat
where the frequency ratio was 1/2, and the onset sur
wave response was subharmonic with the forcing. Zhang
Viñals compared their theoretical results with the experim
tal results of Mu¨ller @4#, who observed subharmonic hex
gons, triangles, and squares near the bicritical point; wh
pattern was observed depended on a relative phase bet
the v and 2v sinusoidal waveforms in the forcing function
A key theoretical idea behind the work of Zhang and Vin˜als
@1,23# and Chen and Vin˜als @22# is that the presence of ce
tain resonant triads composed of Fourier mode wave vec
k1 , k2 andk11k2(uk1u5uk2u) can suppress the formation o
regular wave patterns that involve thek1 and k2 modes. In
particular, this is the case when thek1 and k2 modes are
excited at the onset of the Faraday wave instability, while
mode with wave vectork11k2 is only weakly damped. This
situation arises quite naturally near the bicritical point
parameter space.

Motivated by the ubiquity of quasipatterns in two
frequency Faraday experiments, Lifshitz and Petrich@9# re-
cently investigated twelvefold quasipatterns within t
framework of a simple Swift-Hohenberg-type model for t
evolution of a real scalar fieldu(x,t). Their model lacks
reflection symmetryu→2u, and the linearized equation
lead to a neutral stability curve with a double absolute m
mum. However, because their model leads to tim
independent patterns arising from steady-state bifurcatio
does not capture one of the key features of the two-freque
Faraday problem. Specifically, at the bicritical point in t
Faraday problem, one of the neutral curve minima is ass
ated with a Floquet multiplier~FM! 11, while the other
minimum is associated with a FM of21. A FM of 11
indicates that the transition is to a pattern which oscillate
the same frequency as the excitation frequency, while a
of 21 indicates that the transition is to a pattern which
cillates at half the excitation frequency. In this paper we
specifically interested in this feature of the bicritical point
the two-frequency Faraday experiment, and its potential
fluence on the resonant triad interactions important to
pattern-formation problem.

We investigate the role of resonant triads in the format
of wave patterns near the bicritical point in parameter spa
We focus on the situation that applies to the two-freque
quasipattern@3# and superlattice pattern@5# experiments in
which the forcing frequency ratio,m/n,1, hasm even andn
odd. We show that the usual contribution of resonant tri
to the cross-coupling coefficient in the amplitude equatio
may be greatlysuppressedin this case. This is in marked
contrast to the situation of subharmonic waves with forc
ratio m/n,1, where m is odd andn is even, e.g.,m/n
e
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51/2, as studied by Zhang and Vin˜als. In this latter case, the
presence of near-critical resonant triads leads to peaks in
cross-coupling coefficientg(u) @1#. In order to understand
the distinction between these two situations, we first rec
that in each of these cases the neutral stability curve h
double absolute minimum at the bicritical point, with one
the minima associated with a FM511 and the other with a
FM521 @3,8#. At the bicritical point, there are two distinc
critical wave numbers,km andkn(km,kn). The FM511 is
associated with the smaller critical wave numberkm if the
even frequency is less than the odd one~i.e., m/n
5even/odd), and it is associated with the larger wave nu
berkn if the even frequency isgreaterthan the odd one~i.e.,
m/n5odd/even). We show that in the former case the n
mal form of the coupled amplitude equations describing
relevant resonant triad interaction does not possess any
dratic terms because of a symmetry associated with the
harmonic waves. This is in contrast to the case of odd/e
forcing where quadratic terms are present in the norm
form.

In this paper, we demonstrate this distinction betwe
even/odd and odd/even forcing by considering a simple
ample of one-dimensional waves that are parametrically
cited by two frequencies. Rather than consider the full h
drodynamic equations, we investigate this issue using
simpler model derived from the free-surface Navier-Stok
equation by Zhang and Vin˜als @23#; their model applies to a
deep layer of low-viscosity fluid. We consider both 2v/3v
and 1v/2v forcing frequencies, over a range of frequenc
v, including a critical frequency for which a one
dimensional spatial resonance occurs. Specifically, at
critical frequency, the minima at the bicritical point are
ratio km /kn51/2. We find that this spatial resonance leads
a divergence of the Landau coefficient in the amplitude eq
tion describing bifurcation to subharmonic waves in the c
of the 1/2 forcing frequency ratio; this is consistent with t
results of Zhang and Vin˜als @23#. In contrast, the Landau
coefficient for waves, parametrically excited by tw
frequency forcing in ratio 2/3, is unaffected by any parame
proximity to the bicritical point and/or the spatial resonan
point. While the wave vectors of the critical modesk1 and
2k1 are in resonance, there is a mismatch in their frequ
cies: in this case the usual large contribution to the Lan
coefficient due to the spatial resonance is absent.

The next section of the paper provides the necess
background to our analysis. It reviews the key theoreti
ideas about the role of resonant triad interactions in patte
formation problems, as well as the linear theory for Farad
waves, parametrically excited by two-frequency forcin
This background section closes with a discussion of the n
mal form symmetries associated with the subharmonic in
bility. Section III sets up the example of one-dimension
surface waves, indicating the precise analogy between t
resonance in two dimensions and spatial resonance w
this simpler one-dimensional problem. This section also p
sents the governing hydrodynamic equations that desc
parametrically excited surface waves in the limit of an in
nite depth fluid layer and weak viscosity. The last part
Sec. III sets up the weakly nonlinear analysis that we use
compute the cubic Landau coefficient for harmonic and s
harmonic waves. Section IV presents bifurcation results
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5448 PRE 59MARY SILBER AND ANNE C. SKELDON
two examples: waves parametrically excited by tw
frequency excitation in the ratio 2/3 and waves excited w
a 1/2 excitation frequency ratio. Section V summarizes
results, and indicates some directions for future work.

II. BACKGROUND

A. Resonant triad interactions

One of the central ideas in pattern formation studies
quasipatterns@3,9,15,21# and surface wave patterns par
metrically excited by two-frequency forcing@1,3# involves
near-critical resonant triads. Three linear traveling wa
modes, for instance, form a resonant triad if their wave v
tors k1 , k2 , k3 and frequenciesv1 , v2 , v3 satisfy

k12k22k350 and v12v22v350. ~1!

Since instability to a givenv andk first onsets at a minimum
of a neutral stability curve, there is particular interest in s
tems, such as the Faraday system with two-frequency f
ing, for which it is possible to have a neutral stability cur
with a double minimum. The double minimum correspon
to a bicritical point and the resonant triad interaction of
terest is then given by the locations of the minima, saykm
andkn , of the neutral curve. The resonant triad is made up
wave vectorsk1 , k2 andk11k2, whereuk1u5uk2u5km and
uk11k2u5kn . Thus the angleu betweenk1 andk2 satisfies

cosS u

2D5
kn

2km
. ~2!

Here we have assumed that 0,km,kn,2km ; see Fig. 1.
To illustrate the possible influence of resonant triad int

actions on pattern formation, we first consider a steady-s
bifurcation problem, where modes of wave numberkm and
kn lose stability~almost! simultaneously with the increase o
an external control parameter. We consider a bifurcat
problem on a six-dimensional center manifold for line
modes

A~ t !eik1•x1B~ t !eik2•x1C~ t !ei ~k11k2!•x1c.c., ~3!

whereA,B,CPC. Symmetry considerations@24# determine
that the unfolding of the bifurcation problem takes the for
through cubic order in the amplitudes,

Ȧ5lA1aB* C1~auAu21buBu21cuCu2!A,

FIG. 1. On the left is a plot of a neutral stability curvel(k),
showing minima atk5km andk5kn . On the right is an associate
resonant triadk1 , k2, and k11k2, where uk1u5uk2u5km and
uk11k2u5kn . The angleu betweenk1 andk2 is related to the ratio
kn /km by Eq. ~2!.
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Ḃ5lB1aA* C1~auBu21buAu21cuCu2!B, ~4!

Ċ5mC1bAB1~duAu21duBu21euCu2!C,

where the asterisk indicates the complex conjugate, and
coefficients are all real. Ifl50, mÞ0, then one can furthe
reduce the bifurcation problem to one involving the critic
modesA and B, with C constrained to the center manifold
C52(b/m)AB1•••. One obtains, for ulu sufficiently
small, the reduced~unfolded! bifurcation problem

Ȧ5lA1auAu2A1S b2
ab

m D uBu2A,

~5!

Ḃ5lB1auBu2B1S b2
ab

m D uAu2B.

The presence of the near-critical modeC in Eq. ~3! leads to
a large cross-coupling coefficientg(u)[@b2(ab/m)# in the
amplitude equations~5! sinceumu!1. A consequence of this
is that patterns that involve an equal amplitude superposi
of modesA andB tend to be unstable at onset. For examp
the stability of steady rhombic patterns at angleu @A5B in
Eq. ~5!#, within the setting of the amplitude equations~5!, is
determined by two eigenvalues whose signs are sgn@a1b
2(ab/m)# and sgn@a2b1(ab/m)#. When uab/mu@uau
1ubu, the two eigenvalues take on opposite signs and
pattern is necessarily unstable at onset. If the spatial re
nance occurs nearu5p/2, for example, then square plan
forms are unstable. Quasipatterns and spatially periodic ‘
perlattice’’ patterns, such as described in@5,10,25#, involving
both of the modesA andB above are similarly destabilize
by a large cubic cross-coupling coefficientg(u) in the am-
plitude equations. This point is discussed for various regu
patterns, including quasipatterns, in@1#.

B. Bicritical curves for the two-frequency Faraday problem

We now examine, in greater detail, the double minimu
of the neutral curve associated with the Faraday prob
with two-frequency forcing. Besson, Edwards and Tuck
man @8# computed the linear stability of the flat free surfa
of a shallow fluid layer subjected to a periodic vertical a
celeration

g~ t !5g02gz@cos~x!cos~mvt !1sin~x!cos~nvt1f!#.

~6!

Here g0 is the usual gravitational acceleration,m and n are
coprime integers, andgz ,v,x,f are additional external con
trol parameters. Note that the anglex controls the relative
amplitudes of themv forcing andnv forcing. Bessonet al.
@8# compared, with good agreement, their theoretical pred
tions with their experimental results for various fluids wi
different viscosities in the case thatm54 andn55 in Eq.
~6!. In this case, they found that the initial instability of th
fluid surface was either associated with a Floquet multip
~FM! 21 or 11, depending on whether the odd or ev
frequency component in Eq.~6! dominated. The transition
between subharmonic (FM521) and harmonic respons
(FM511) occurred at a particular value of the anglex in
Eq. ~6!, called the bicritical point.
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Here we do not consider the full hydrodynamic proble
but rather a simplified model derived by Zhang and Vin˜als
@23#, which applies to a deep layer of weakly viscous flu
The linearized equation for the free surface modehk(t)e

ikx is

hk914nk2hk81S g~ t !k1
Gk3

r
14n2k4Dhk50, ~7!

where n is the kinematic viscosity of the fluid,G is the
surface tension, andr is the fluid density. Note that in the
absence of the time-periodic parametric forcing~i.e., gz
50), one recovers a dispersion relation, where the damp
is given by 2nk2 and the water wave frequencyv0 satisfies
the usual gravity-capillary wave dispersion relationv0

2

5g0k1Gk3/r.
In Fig. 2 we present an example of the neutral stabi

curvesgz(k) for the parameters used by Bessonet al. @8#,
and for various values of the parameterx. These curves were
obtained from Eq.~7! using the same method that Bess
et al. @8# used to obtain the neutral curves for the full hydr
dynamic problem. The bicritical point in this example occu
at x563.11° for gz53.13g0(g05980.665 cm/s2), k1

57.14 cm21, andk259.35 cm21, wherek6 are the values

FIG. 2. Neutral stability curves computed from Eq.~7!. The
anglex in Eq. ~6! is indicated in the lower right corner of each plo
Floquet multipliers of11(21) are indicated by solid~dashed!
lines. The first instability encountered with increased forcinggz is
to harmonic waves ifx,xc'63°, and to subharmonic waves fo
x.xc . The other parameters of the forcing function arem54, n
55, f50, and v/2p511 Hz; the fluid parameters areG
520.6 dyn/cm,n50.209 cm2/s, andr50.95 g/cm3.
,

.

g

y

of k associated with FMs61. The locations of the minima
can be roughly approximated by considering the simple w
ter wave dispersion relationv0

25g0k1Gk3/r, and assuming
subharmonic response to the forcing frequencies atmv and
nv, i.e., for m54 andn55:

S 4v

2 D 2

'g0k11
Gk1

3

r
,

~8!

S 5v

2 D 2

'g0k21
Gk2

3

r
.

For the example of Fig. 2 this approximation yieldsk1

'8.0 andk2'9.8. We note that the neutral stability curve
obtained from the simple linear problem~7! are qualitatively
very similar to those obtained by Bessonet al. @8# from the
full hydrodynamic problem, cf. our Fig. 2 with Fig. 2 in@8#.

C. Normal form symmetries

We now reexamine the role of resonant triad interactio
for the mode interaction problem pertinent to the tw
frequency Faraday experiment. In particular, we will inve
tigate the additional effect of normal form symmetries on t
pattern-formation problem. It is through the normal for
symmetries that we take into account certain aspects of
temporal resonance condition in Eq.~1!. We wish to contrast
the situations where the forcing frequenciesmv and nv in
Eq. ~6!, m,n, havem even,n odd with m odd,n even. We
are specifically interested in the case where the anglex in
Eq. ~6! is close to the bicritical pointxc .

We analyze the resonant triad interaction in terms o
stroboscopic map since we are interested in a periodic
forced system. We denote the surface height at timet5pT,
p an integer,T52p/v, by hp(x). Let the resonant triad be

hp5Apeik1•x1Bpeik2•x1Cpei ~k11k2!•x1c.c.1•••, ~9!

whereuk1u5uk2u5km and uk11k2u5kn , 0,km,kn,2km .
Here them,n subscripts indicate that the critical wave num
bers can be roughly associated with themv andnv forcing,
respectively, as in Eq.~8! above. The general form of th
cubic-order amplitude equations, consistent with translat
symmetry and reflection symmetry, is@cf. Eq. ~4!#

Ap115lAp1aBp* Cp1~auApu21buBpu21cuCpu2!Ap ,

Bp115lBp1aAp* Cp1~auBpu21buApu21cuCpu2!Bp , ~10!

Cp115mCp1bApBp1~duApu21duBpu21euCpu2!Cp .

In the case thatm is even andn is odd, the Floquet multipli-
ers for the linearized problem arel511 andm521 when
x5xc , whereas ifm is odd andn is even, thenl521, m
511.

It may be possible to further simplify the bifurcatio
problem~10! by a normal form transformation. In particula
there exists a near-identity nonlinear transformation such
all nonlinear terms in Eq.~10!, which do not commute with
the matrixL of the linearized problem, can be removed~see,
for example, Crawford@26#!. Here



-
n
th

n

th
th
pl

a
h

er

st
-
ria
io
as
so
q

in
e

tia
l d
th

tic

e

n

fi-
te
al

-

he
up-

at

so-

-

l

5450 PRE 59MARY SILBER AND ANNE C. SKELDON
L5S l 0 0

0 l 0

0 0 m
D , ~11!

whereulu5umu51. This normal form symmetry may be in
terpreted as a temporal phase-shift symmetry: harmo
modes are unchanged in one period of the forcing, while
subharmonic ones are taken to their negatives.

In the case thatl521, m511, i.e.,m odd andn even in
the forcing ~6!, the bifurcation problem~10! is already in
normal form since the normal form symmetry is equivale
to a translation byd, wherek1•d5k2•d5p. The presence
of the quadratic terms in this normal form means that
resonant triad interactions will have a strong influence on
pattern-formation problem, as described for the sim
steady-state bifurcation example in Sec. II A.

In contrast, in the case thatl511, m521, i.e.,m even
and n odd, the normal form transformation allows the qu
dratic terms in the bifurcation problem to be removed. T
normal form of the bifurcation problem, through cubic ord
is

Ap115Ap1~auApu21buBpu21cuCpu2!Ap ,

Bp115Bp1~auBpu21buApu21cuCpu2!Bp , ~12!

Cp1152Cp1~duApu21duBpu21euCpu2!Cp .

In this case, the bifurcation to harmonic waves is inve
gated in the invariant subspaceC50, and there is no diver
gence of the cross-coupling term due to the resonant t
interaction. The contribution of the resonant triad interact
to the pattern-formation problem is suppressed in this c
This is a manifestation of the fact that the temporal re
nance condition is not met by the bifurcating modes in E
~9!. In the next section we test these ideas by perform
explicit computations of bifurcation coefficients from th
simplified hydrodynamic model, due to Zhang and Vin˜als
@23#, of the two-frequency Faraday experiment.

III. TWO-FREQUENCY FORCING OF
ONE-DIMENSIONAL SURFACE WAVES

A. Resonant interactions in a one-dimensional problem

It is possible to investigate the effects of strong spa
resonance on a pattern-formation problem in one spatia
mension. This is done by considering the situation where
minimakm andkn of the neutral curve satisfykm /kn51/2. In
this case, the stroboscopic map associated with the cri
modesZpeikx1Wpe2ikx1c.c. is, through cubic order,

Zp115lZp1aWpZp* 1~auZpu21buWpu2!Zp ,
~13!

Wp115mWp1bZp
21~cuWpu21duZpu2!Wp .

In form, this is identical to Eq.~10! restricted to the subspac
A5B5Z, C5W.

If l521 andm511, then Eq.~13! is already in normal
form. The unfolding is
ic
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Zp1152~11e!Zp1aWpZp* 1~auZpu21buWpu2!Zp ,
~14!

Wp115~11d!Wp1bZp
21~cuWpu21duZpu2!Wp .

Subharmonic waves bifurcate ate50. For dÞ0, the center
manifold is given byW52bZ2/d1•••, and the equation
for Z on the center manifold is

Zp1152~11e!Zp1~a2ab/d!uZpu2Zp . ~15!

This gives the branching equation

052e1~a2ab/d!uZu2. ~16!

Note that the presence ofquadratic terms in the amplitude
equations~14! is manifest in the center manifold bifurcatio
equation~15! through their contribution to thecubic Landau
coefficient for uZpu2Zp . Furthermore, sinced is small for
nearly critical modes, their contribution to the cubic coef
cient is large, forcing the subharmonic wave to bifurca
with very small amplitude. This effect is the one-dimension
analog of the cross-coupling termg(u) diverging near a spa
tial resonance. This is the situation that can occur whenm is
odd andn is even (n.m) in Eq. ~6!, e.g.,m51,n52.

If, on the other hand,l511, m521, then the quadratic
terms in Eq.~13! can be removed, and the usual effect of t
spatial resonance on the pattern formation problem is s
pressed. Specifically, the~unfolded! normal form of the bi-
furcation problem is

Zp115~11e!Zp1~auZpu21buWpu2!Zp ,
~17!

Wp1152~11d!Wp1~cuWpu21duZpu2!Wp .

Harmonic waves, which bifurcate from the trivial solution
e50, are investigated in the invariant subspaceW50; they
satisfy the branching equation

05e1auZu2. ~18!

Subharmonic waves bifurcate from the trivial solution atd
50 and can be investigated in the invariant subspaceZ50;
they satisfy the branching equation

052d1cuWu2. ~19!

Neither of these branches is affected by the spatial re
nance. This is the situation we expect whenm is even andn
is odd in Eq.~6!, e.g.,m52, n53.

In Fig. 3, we plot the bicritical pointxc as a function ofv
for both (m,n)5(1,2) and (m,n)5(2,3). These curves ap
ply to the linear equation~7!, with G520.6 dyn/cm, n
50.209 cm2/s, andr50.95 g/cm3. In this figure we show
also the ratio of wave numberskn /km at the bicritical point.
Note that in each case the spatial resonancekn /km52 is
achieved for a particular value of the forcing frequencyv
5v res.

B. The Zhang-Viñals hydrodynamic model

Zhang and Vin˜als @1# derive the following model for the
surface deviationh(x,t) and surface velocity potentia
F̂(x,t), wherexPR2:
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FIG. 3. ~a! Bicritical point xc plotted as a
function of the frequencyv in Eq. ~6! for m
51, n52; ~b! corresponding ratio of critical
wave numbersk1 /k2 for x5xc(v). ~c! Bicritical
point xc plotted as a function of the frequencyv
in Eq. ~6! for m52,n53; ~d! corresponding ratio
of critical wave numbersk2 /k3 for x5xc(v). In
both cases f50 and G520.6 dyn/cm, n
50.209 cm2/s, andr50.95 g/cm3 in Eq. ~7!.
be
ed

e

-
in

e

nt
to

so-
-
he
~] t2ĝ¹2!h2D̂F̂5F̃~h,F̂!,
~20!

~] t2ĝ¹2!F̂2Âh5G̃~h,F̂!.

Here the linear operatorÂ is

Â[Ĝ0¹22Ĝ014 f̂ @sin~2t !1k sin~2pt1f!#, ~21!

where p5n/m. The linear, nonlocal operatorD̂ multiplies
each Fourier component of the field by its wave num
modulus. F̃ and G̃ are nonlinear operators to be defin
shortly, together with the parametersĝ, Ĝ0 , Ĝ0 , f̂ , andk.

In deriving the above, Zhang and Vin˜als assumed that th
experimental forcing takes the formgzr @sin(2mv0t)
1k sin(2nv0t1f)#, where k[(12r )/r ; they have scaled
time by the frequencymv0. Here we choose a slightly dif
ferent scaling of time; we assume that the parametric forc
takes the ~dimensionless! form f @cos(x)cos(mt)
1sin(x)cos(nt1f)#. We let t5mt/2 andF̂5(2/m)F in Eq.
~20! to obtain

~]t2g¹2!h2D̂F5F~h,F!,
~22!

~]t2g¹2!F2Ah5G~h,F!,

where

g[
2nk0

2

v
. ~23!

The wave numberk0 satisfies the equation

g0k01
Gk0

3

r
5

m2v2

4
, ~24!

where v52v0 is the dimensioned forcing frequency. Th
linear operatorA is now

A[G0¹22G01 f @cos~x!cos~mt!1sin~x!cos~nt1f!#,
~25!

where
r

g

G0[
Gk0

3

rv2 , G0[
g0k0

v2 , f [
gzk0

v2 . ~26!

The nonlinear operators are

F~h,F![2¹•~h¹F!1
1

2
¹2~h2D̂F!2D̂~hD̂F!

1D̂S hD̂~hD̂F!1
1

2
h2¹2F D ,

~27!

G~h,F![
1

2
~D̂F!22

1

2
~¹F!22~D̂F!@h¹2F1D̂~hD̂F!#

2
1

2
G0¹•„~¹h!~¹h!2

….

Finally, we put the governing equations in a convenie
form for the perturbation analysis that follows. In order
recover the linearized equation~7! for h, we apply the opera-
tor (]t2g¹2) to the first of Eqs.~22!, and then use the
second equation to express (]t2g¹2)F asAh1G(h,F).
We supplement this equation with the first of Eqs.~22!, re-
written as an equation for the fieldF, to obtain the full
system of equations:

Lh5~]t2g¹2!F~h,F!1D̂G~h,F!,
~28!

D̂F5~]t2g¹2!h2F~h,F!.

Here the linear operator is

L[]tt22g¹2]t1~g2¹42D̂A!, ~29!

where the operatorA is given by Eq.~25!.

C. Weakly nonlinear analysis:
Derivation of the bifurcation problem

We restrict our analysis to spatially one-dimensional
lutions of the variablexPR, and use a two-timing perturba
tion method to determine weakly nonlinear solutions of t
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system~28! in the vicinity of the bifurcation to~sub!har-
monic waves, i.e., near a primary instability associated w
a Floquet multiplier11(21). To do this we introduce a
small parametere, such that

h~x,t!5eh1~x,t,T!1e2h2~x,t,T!1e3h3~x,t,T!1•••,
~30!

F~x,t!5eF1~x,t,T!1e2F2~x,t,T!1e3F3~x,t,T!1•••,

where

T5e2t, f 5 f 01e2f 2 . ~31!

Here f 0 is the value of the forcing at the bifurcation poin
We seek spatially periodic solutions in the following sep
rable Floquet-Fourier form:

h15z1~T!p1~t!eikcx1c.c., h25z1
2~T!p2~t!ei2kcx1c.c.,

~32!
F15z1~T!q1~t!eikcx1c.c., F25z1

2~T!q2~t!ei2kcx1c.c.

Here pl ,ql( l 51,2) are 2p-periodic functions of the fas
time t in the case of harmonic waves~FM511!; in the case
of subharmonic waves they are 4p-periodic int. The wave
numberkc is associated with the first unstable mode.

At leading order ine, we obtain

L0h150, ~33!

D̂F15~]t2g]xx!h1 .

Here the linear operatorL0 is L with f 5 f 0, whereL is
defined by Eq.~29!. The equationL0h150 determines the
bifurcation pointf 0 by the solvability condition that it have
periodic solution; it is the equation we solved in Sec. II B
determine the neutral stability curves. This equation also
termines the critical wave numberkc by the requirement tha
f 0 be the smallest value off that admits a periodic solution
Given f 0 and kc , we determine the solution ofL0h150
involving the periodic functionp1(t), which we may assume
is real. We expressp1 in terms of its ~truncated! Fourier
series

p1~t!5(
j 50

N

aje
i ~ j 1m!t1c.c., ~34!

whereN is chosen large enough so that the solution is w
converged. Herem50 for the case of harmonic waves an
m51/2 for subharmonic waves. We readily solve the seco
of Eqs.~33! for F1, yielding

q1~t!5
1

kc
~]t1gkc

2!p1 . ~35!

At order e2, we obtain

L0h252~]t2g]xx!@]x~h1]xF1!1D̂~h1D̂F1!#

1
1

2
D̂@~D̂F1!22~]xF1!2#

52kc
3z1

2q1
2e2ikcx1c.c., ~36!
h

-

e-

ll

d

where q1
2 is a real 2p-periodic function. We determine a

solutionh2 involving the real periodic functionp2(t), given
by its ~truncated! Fourier series representation

p25(
j 50

N

bje
i j t1c.c. ~37!

We also find, at this order, thatF2 satisfies

D̂F25~]t2g]xx!h2 ~38!

since]x(h1]xF1)1D̂(h1D̂F1)50; thus

q2~t!5
1

2kc
~]t14gkc

2!p2 . ~39!

Finally, we consider the equation at ordere3:

L0h3522]t]Th112g]xx]Th1

1 f 2@cos~x!cos~mt!1sin~x!cos~nt1f!#D̂h1

1~]t2g]xx!$2]x~h1]xF21h2]xF1!

2D̂~h1D̂F21h2D̂F1!1 1
2 ]xx~h1

2D̂F1!

1D̂@h1D̂~h1D̂F1!1 1
2 h1

2]xxF1#%

1D̂S ~D̂F1!~D̂F2!2~]xF1!~]xF2!

2D̂F1@h1]xxF11D̂~h1D̂F1!#2
G0

2
]x~]xh1!3D .

~40!

In order to ensure that a 2p-periodic solution exists, we mus
apply a solvability condition to this equation, written com
pactly asL0h35H(x,t,T). Specifically, we require

^h̃1 ,L0h3&5^h̃1 ,H~x,t,T!&50, ~41!

where the inner product is

^ f ,g&[
kc

8p2E
0

4p

dtE
0

2p/kc
f * ~x,t!g~x,t!dx; ~42!

h̃1[ p̃1(t)eikcx is a periodic solution to the adjoint linea
problemL 0

†h̃150. Here

L 0
†[~]t1g]xx!

22D̂A, ~43!

where f 5 f 0 in A.
The solvability condition leads to the amplitude equati

d
dz1

dT
5a f 2z11~A1B!uz1u2z1 , ~44!

where

d5
1

2pE0

4p

~p181gkc
2p1! p̃1dt,
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a5
kc

4pE0

4p

@cos~x!cos~mt!

1sin~x!cos~nt1f!#p1p̃1dt,
~45!

A52
kc

2

2pE0

4p

@~q1p2!81gkc
2q1p2# p̃1dt,

B5
kc

3

4pE0

4p

@2~p1
2q1!82gkc

2p1
2q11kcq1

2p1

1 3
2 kc

2G0p1
3# p̃1dt.

In the above, differentiation with respect tot is denoted by a
prime. We also took the periodic solutionp̃1 to be real.

In the above derivation of the bifurcation problem~44!,
we have separated the two contributionsA andB to the cubic
coefficientA1B. The contributionA comes from the qua
dratic nonlinear terms in the original hydrodynamic model
depends on the spatially resonant modesei2kcx as is evident
from the p2 terms in the integral expression forA given in
Eq. ~45!. The contributionB comes from cubic nonlinearitie
and therefore depends only on the modeeikcx. We calculate
all of the coefficientsd,a,A, andB numerically as follows.

At leading order ine, Eq. ~33! for h1 reduces to the linea
problem ~7!. The solution forh1 is found by representing
p1(t) as the truncated Fourier series given in Eq.~34!. As
discussed in@8#, the problem then reduces to a generaliz
eigenvalue problem of the form

Ax5gzBx, ~46!

wherex is a vector of the Fourier coefficientsaj in Eq. ~34!.
The EISPACK routineRGG is used to find the eigenvalues an
corresponding eigenvectors, the eigenvalues giving the lin
stability curves shown in Fig. 2. The eigenvalue correspo
ing to the minimum of the resonance tongue under consi
ation is then determined, with the corresponding eigenve
then giving the coefficientsaj for the spectral representatio
of p1(t), from which q1(t) can be calculated. The adjoin
linear problem forp̃1 is solved in a similar way to that fo
p1.

Once a spectral representation forq1 is found,q1
2 is cal-

culated using a pseudospectral approach. This then ena
the ordere2 problem for h2, Eq. ~36!, to be written as a
nonhomogeneous linear problem forp2. This can be solved
using theEISPACK routine RG. Finally, the coefficientsd,a,
A, and B in the amplitude equation~44! are computed by
calculating the various products ofp1 ,p2, and q1 using a
pseudospectral method and then calculating the inner p
ucts.

Typically 20 Fourier modes sufficed to representp1 ,p2,
and q1, and 257 collocation points were adequate in
pseudospectral calculation of the nonlinear terms. Che
were done, with twice as many modes and collocation poi
to ensure that the results were well converged.

In the next section we present plots of the ratioA/B of the
two contributions to the cubic Landau coefficient for the ca
t

d

ar
-
r-
or

les

d-

e
ks
s,

e

of bifurcation to waves excited with forcing frequency rat
2/3, and for the case of bifurcation to waves excited w
forcing frequency ratio 1/2.

IV. RESULTS

We have calculated the coefficientsd, a, A, and B in
the amplitude equation~44! for four cases. These correspon
to the two lowest resonance tongues in the two casesm
51, n52 and m52, n53: whether harmonic or subhar
monic waves bifurcate at a smaller value of the driving a
plitude depends on whetherv andx take values which are
above or below the bicritical lines given in Fig. 3. The oth
parameters used are the same as those listed in the capt
Fig. 3.

Figure 4 shows the ratioA/B of the two contributions to
the cubic Landau coefficient for the excitation frequency
tio 2/3 for the two tongues which bifurcate at lowest amp
tudes of the parametric excitation,gz . In each case the uppe
graphs show the surface representingA/B as a function ofv
and x. The lower graphs show the corresponding conto
plots. Superimposed on the contour plot is the bicritical li
from Fig. 3 above: the square mark on this graph indica
the point on the bicritical line at which the ratio between t
wave numbers for the two minima is 2. Note that in this ca
where the excitation frequency ratio is 2/3, the bifurcation
the harmonic waves occurs at lower amplitudes of the pa
metric excitationgz for values ofv andx below the bicriti-
cal line, while the bifurcation to subharmonic waves occu
first for values ofv andx above the bicritical line. The mos
striking feature of the plots associated with the harmo
waves in Fig. 4 is the insensitivity of the quantityA/B to the
point on the bicritical line at which the ratio between th
wave numbers is 2. Spatial resonance is also not impor
for the subharmonic waves since the subharmonic ton
occurs at the higher wave number in this case of even/
excitation frequencies. This is in marked contrast to the c
of odd/even excitation, as demonstrated by the graphs sh
in Fig. 5, which were computed for an excitation frequen
ratio 1/2. This time, it is the subharmonic instability whic
occurs first for values ofv and x below the bicritical line
and the harmonic instability which sets in first for values
v andx above the bicritical line. As for the previous grap
A/B for the harmonic waves is unaffected by the ratio b
tween the wave numbers and the parameter proximity to
bicritical line. However, in the case of subharmonic wav
there is a singularity occurring on the bicritical line at th
point of spatial resonance. This is consistent with the disc
sion in Sec. III A above, showing how critical the nature
the instability is in determining whether or not spatial res
nance is important to the pattern formation process near
bicritical line.

Note that in Fig. 5 there is in fact a line of singularitie
tangent to the bicritical line at the point on the bicritical lin
where the ratio between the wave numbers is 1/2. This
of singularities can also be understood through spatial re
nance. Recall that above the bicritical line the subharmo
instability occurs at a higher value of the excitation amp
tude than the harmonic instability, as shown in Fig. 6 for t
valuesv5135 s21, x577.8°. These values were chosen
representative of a point on the line of singularities shown
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FIG. 4. Plots ofA/B as a function ofx andv, for m52, n53, andf50 in Eq. ~6!. Computations are done at the bifurcation point
~sub!harmonic waves on the left~right!. The fluid parameters areG520.6 dyn/cm,n50.209 cm2/s, andr50.95 g/cm3. We give both
surface plots@~a! and~c!# and the corresponding contour plots@~b! and~d!#. In the contour plots we reproduce, from Fig. 3, the bicritical li
in the v,x plane. The square on this curve gives the value ofv where the 1/2 spatial resonance occurs.
u

oc

es
e
ini-
Fig. 5. In this case the minimum of the subharmonic tong
occurs at an excitation amplitude ofgz52.1658g0 and at a
wave number ofkm53.308 cm21. However, at this excita-
tion amplitude there is a bifurcation to harmonic waves
e

-

curring at the wave number of 6.616 cm2152km , and
therefore spatial resonance will occur. Similarly, for valu
of v andx to the right of the singularity which occurs on th
bicritical line, spatial resonance can occur between the m
FIG. 5. Plots ofA/B similar to those in Fig. 4, but computed form51 andn52. The divergence ofA/B for subharmonic waves is
discussed in the text. This divergence occurs on a curve that is tangent to the bicritical line at the pointv res5191 s21, xc572.83°; this is
the point where there is a 1/2 spatial resonance on the bicritical line.
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mum of the subharmonic curve and the right side of
harmonic tongue. Note that, in practice, it is only close to
bicritical line that one would expect to observe the effect
the spatial resonance on the subharmonic waves, as i
other cases bifurcation to harmonic waves occurs at sig
cantly lower amplitudes of the excitation. We also note t
for parameterson the bicritical line the center manifold re
duction described in Sec. III A can break down.

V. CONCLUSIONS

In this paper we have investigated how normal form sy
metries affect the role of resonant triads in the pattern
mation problem for surface waves parametrically excited
two-frequency forcing. We focused on the behavior of t
system near the bicritical point in parameter space, wh
modes of wave numberkm and kn lose stability simulta-
neously with one mode associated with a Floquet multip
of 11 and the other associated with a Floquet multiplier
21. Our analysis shows that when the Floquet multipl
11 is associated with the smaller wave number, then q
dratic terms may be removed from the relevant amplitu
equations. In this case, the contribution of resonant triad
the bifurcation problem is not affected by proximity to th
bicritical point. In contrast, when the Floquet multiplie
21 is associated with the smaller wave number, then
quadratic terms cannot be removed by a normal form tra
formation. Hence, in this instance, resonant triads influe
greatly the bifurcation problem near the bicritical point. T
former situation applies when the forcing frequency ratio
m/n,1, with m even andn odd, while the latter situation
occurs whenm is odd andn is even. Thus we expect norma
form symmetries are important to understanding the exp
mentally observed quasipatterns and superlattice patt
@3,5#, which employ even/odd forcing. Such effects are n
essarily neglected in theoretical models, such as the mod
Lifshitz and Petrich@9#, in which quasipatterns form throug
a steady-state bifurcation.

This paper demonstrates the influence of the normal fo

FIG. 6. Neutral stability curves forv5135 s21, x577.8°,
m51, n52. The harmonic~subharmonic! tongue is indicated by a
solid ~dashed! line. The minimum of the subharmonic tongue o
curs atkm53.308 cm21, whengz52.1658g0. Also marked is the
point where 2km intersects the harmonic tongue. Note that this
tersection occurs at the critical value ofgz , where bifurcation to
subharmonic waves occurs.
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symmetries on the bifurcation problem by considering
example of one-dimensional waves, parametrically exci
by two-frequency forcing. In this one-dimensional problem
spatial resonance, involving Fourier modes of wave num
km and 2km , takes the place of a resonant triad. Specifica
we focused on the situation where the bicritical point
volves modeskm andkn52km . We considered instability to
harmonic waves and subharmonic waves when the t
frequency forcing was in ratiom/n51/2 and m/n52/3.
Rather than perform the weakly nonlinear analysis on the
hydrodynamic equations, we used the simpler Zhang
Viñals model@1# that applies to a deep layer of a near
inviscid fluid. Consistent with our general bifurcation the
retic analysis, we found that only in the case of subharmo
waves, parametrically excited bym/n51/2 forcing, did the
presence of the bicritical point lead to a diverging Land
coefficient in the bifurcation problem. In the other cases,
Landau coefficient was completely insensitive to any para
eter proximity to the bicritical point or to the spatial res
nance.

Our work suggests that the spatially resonant triads,
portant to a broad class of pattern formation problems, do
play an important role in pattern formation of parametrica
excited surface waves near the bicritical point in the case
even/oddforcing. This work is particularly timely given a
recent comment by Arbell and Fineberg@6#, who find in their
experiment that they only observe superlattice patterns if,
m,n, m is even andn is odd~or bothm andn are odd!: they
never observe them ifm is odd andn even. However, since
our analysis focused only on the case of a one-dimensio
pattern formation problem, more analysis in the tw
dimensional case is warranted. In the future we hope to c
out a more extensive analysis of the contribution of reson
triads to two-dimensional Faraday waves witheven/oddforc-
ing. For instance, it would be of interest to carry out such
analysis for the physical parameters of the recent Fara
experiments in which superlattice patterns were observed@5#.
In these experiments the forcing frequencies were in ra
6/7; the spatial Fourier transform of the harmonic wave p
terns exhibited peaks, some of which could be associa
with the two different frequency components of the forci
wave form@5#.

Although the analysis presented in this paper was m
vated by and applied to the problem of Faraday waves w
two-frequency forcing, we expect many of the symmet
based ideas to carry over to other parametrically excited
tern forming systems. We have in mind, for example, t
recent experiments on one-dimensional surface waves on
rofluids, which are excited by a time-periodic magnetic fie
@27#. In this system, both harmonic and subharmonic
sponses occur with single-frequency forcing.
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